On a Family of 2-Variable Orthogonal Krawtchouk Polynomials

نویسندگان

  • F. Alberto GRÜNBAUM
  • Mizan RAHMAN
چکیده

We give a hypergeometric proof involving a family of 2-variable Krawtchouk polynomials that were obtained earlier by Hoare and Rahman [SIGMA 4 (2008), 089, 18 pages] as a limit of the 9− j symbols of quantum angular momentum theory, and shown to be eigenfunctions of the transition probability kernel corresponding to a “poker dice” type probability model. The proof in this paper derives and makes use of the necessary and sufficient conditions of orthogonality in establishing orthogonality as well as indicating their geometrical significance. We also derive a 5-term recurrence relation satisfied by these polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Krawtchouk Polynomials and Composition Birth and Death Processes

This paper defines the multivariate Krawtchouk polynomials, orthogonal on the multinomial distribution, and summarizes their properties as a review. The multivariate Krawtchouk polynomials are symmetric functions of orthogonal sets of functions defined on each of N multinomial trials. The dual multivariate Krawtchouk polynomials, which also have a polynomial structure, are seen to occur natural...

متن کامل

Extensions of discrete classical orthogonal polynomials beyond the orthogonality

It is well known that the family of Hahn polynomials {hα,β n (x;N)}n≥0 is orthogonal with respect to a certain weight function up to N . In this paper we present a factorization for Hahn polynomials for a degree higher than N and we prove that these polynomials can be characterized by a ∆-Sobolev orthogonality. We also present an analogous result for dual-Hahn, Krawtchouk, and Racah polynomials...

متن کامل

Image representation using separable two-dimensional continuous and discrete orthogonal moments

This paper addresses bivariate orthogonal polynomials, which are a tensor product of two different orthogonal polynomials in one variable. These bivariate orthogonal polynomials are used to define several new types of continuous and discrete orthogonal moments. Some elementary properties of the proposed continuous Chebyshev–Gegenbauer moments (CGM), Gegenbauer–Legendre moments (GLM), and Chebys...

متن کامل

Constrained Energy Problems with Applications to Orthogonal Polynomials of a Discrete Variable

Given a positive measure with kk > 1 we write 2 M if is a probability measure and ? is a positive measure. Under some general assumptions on the constraining measure and a weight function w we prove existence and uniqueness of a measure w that minimizes the weighted logarithmic energy over the class M. We also obtain a characterization theorem, a saturation result and a balayage representation ...

متن کامل

Image analysis by Krawtchouk moments

In this paper, a new set of orthogonal moments based on the discrete classical Krawtchouk polynomials is introduced. The Krawtchouk polynomials are scaled to ensure numerical stability, thus creating a set of weighted Krawtchouk polynomials. The set of proposed Krawtchouk moments is then derived from the weighted Krawtchouk polynomials. The orthogonality of the proposed moments ensures minimal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010